
Introduction
One of the great impediments to further development of
shellfish aquaculture in the Northeast Region is a percep-
tion that industry expansion could have negative environ-
mental effects on our coastal waters.  Although
considerable research over the last 25 years has focused
on both the positive and negative effects of rebuilding
mollusc populations, which could filter enormous quanti-
ties of algae, such studies are sometimes classed as envi-
ronmental “impacts,” which has a connotation of aesthetic
loss and a perceived “loss of nature.”  The purpose of this
fact sheet is to discuss the potential environmental effects
of expanding shellfish aquaculture and social issues sur-
rounding such expansion and to provide key scientific
resources.

Bivalves as Filter Feeders
Research has shown that bivalve species such as oys-

ters can filter, on average, 15-55 liters/day (4-14.5 gal-
lons/day) of seawater (for oysters, see Powell et al. 1992;
for quahogs, or hard clams, see Doering and Oviatt 1986).
Filtration or grazing has been shown to control phyto-
plankton growth by removing them from the water (Clo-
ern 1982; Officer et al. 1982) — this process is referred to

as “top-down” population control. When not sufficiently
grazed, phytoplankton populations can bloom excessive-
ly, which often leads to the deterioration of water quality.
For example, extensive blooms block sunlight and pre-
vent photosynthesis by submerged aquatic vegetation, or
sea grasses — grasses then die and with them important
habitat for juvenile fish (e.g., Kemp et al. 1983; Short and
Burdick 1996; Newell and Koch 2004). SAV loss is not
the only consequence of phytoplankton blooms: the
ungrazed phytoplankton die and in settling to the bottom,
biochemical processes occur that alter the quality of those
oxygen-rich sediments to oxygen-less, or anoxic, sedi-
ments (Pearson and Rosenberg 1978).

The extensive loss of natural oyster reefs and clam
beds due to over fishing and physical destruction of habi-
tats has been implicated as major contributors to water
quality degradation in the Chesapeake Bay and other estu-
aries (Officer et al. 1984; Newell 1988). This loss, again,
is related to ungrazed phytoplankton blooms. During
nighttime when phytoplankton populations are not pro-
ducing oxygen through photosynthesis, they are still
respiring and thus consuming oxygen. Heavy phytoplank-
ton blooms have greater overnight oxygen demand, so it
is likely that when anoxia or hypoxia (extremely low oxy-
gen conditions) occurs at night or close to dawn, it could
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lead to fish kills. Thus, healthy shellfish populations can
be a factor in maintaining healthy finfish populations in
coastal waters as well.    

Bivalves as Intermediaries in Cycling
Nitrogen and Phosphorus 

Nitrogen in its inorganic mineral form in coastal
waters acts as a “fertilizer” or stimulant of phytoplankton
growth. However, an oversupply of nitrogen, resulting in
part from land runoff, airborne deposition, and waste dis-
charges, can lead to phytoplankton blooms, microalgal
growth, declines in submerged aquatic vegetation, all of
which make waters more prone to low oxygen conditions
(Nixon 1995).  Filter feeding bivalves play a major role
as intermediaries in cycling minerals, primarily nitrogen
and phosphorus, that are important for maintaining aquat-
ic productivity. Understanding the nitrogen cycle — the
various ways that nitrogen is utilized, transformed and
stored (Figure 1) — is helpful in understanding the eco-
logical importance of bivalves.  In most marine and estu-
arine ecosystems, inorganic nitrogen is the limiting factor
in the production of organic matter, so the available
ammonia or nitrate controls the growth of phytoplankton
populations in what is often referred to as “bottom-up”
processes. 

In “top-down” processes, on the other hand, filter-
feeding bivalves exert control over the amount of avail-
able mineral nitrogen to phytoplankton by sequestering
nitrogen as protein in their meat and shell tissues (e.g.,
Rice 1999).  At the same time, they deposit organic nitro-
gen-rich biodeposits to the bottom sediments that bacteria
decompose, thus forming ammonium; ammonium is con-
verted by nitrifying bacteria in oxygen-rich sediments to
nitrate, which denitrifying bacteria in deeper sediment
layers then then convert to nitrogen gas (Kaspar et al.
1985; Newell et al. 2004). Biodeposition by filter feeding
bivalves is important in the transfer of organic nitrogen in
phytoplankton and particulates in the water column to the
sediments, a process known as benthic-pelagic coupling
(Doering et al. 1987; Dame et al. 1989).

It is important to note that under some conditions if
too many bivalves are farmed in a location, the resulting
biodeposits could potentially overwhelm the capability of
sediments to maintain nitrification processes. For exam-
ple, there have been instances when mussels and other
bivalves reared in suspended culture in nutrient-rich
waters have produced such high biodeposits that sedi-
ments have “gone sour,” that is, they have become deplet-
ed of oxygen; toxic sulfides and mats of sulfur bacteria are
then produced, which disrupts normal benthic processes
(e.g., Dahlback and Gunnarsson 1981; Tenore et al. 1982).
This problem of anoxia is usually associated with stock-

ing densities in suspended culture that exceed 2-5
tons/acre; it has not been observed in any on-bottom cul-
ture operations. (According to a U.S. Ninth Circuit Court
of Appeals decision in 2002, biodeposits from shellfish
farms are not considered “discharges” under the U.S.
Clean Water Act.)

There should  be little concern about “overloading”
our coastal waters with shellfish in the Northeast because
of their significant depletion since the early-to-mid 20th
century (Jackson et al. 2001). This is true for all estuaries
in the region — Chesapeake Bay, Narragansett Bay,
Delaware Bay, Long Island Sound — which were once
teeming with oysters (MacKenzie 2007). Nevertheless, it
is in the economic interest of shellfish farmers to manage
stocking densities by culturing shellfish in areas of good
tidal flushing that will prevent depositional overloading of
sediments (Crawford et al. 2003).  If high stocking densi-
ties cause sediment fouling problems, they would also
impair the rates of shellfish growth, thereby cutting into
bottom line profits (Ferreira et al. 2007). 
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Figure 1. Nitrogen in the environment may be in the form of inor-
ganic or mineral nitrogen (NO3

–, NH4
+), or organic nitrogen (Phy-

toplankton Nitrogen, Dissolved Organic Nitrogen, Consumer and
Decomposer Nitrogen) in which the nitrogen is part of carbon-rich
molecules either in living tissues or free in the environment.
Bivalves are consumers and decomposers. Various chemical
processes (i.e., arrows), usually mediated by bacteria or other
microorganisms, can convert one form of nitrogen to another.
Most nitrogen is relatively inert as nitrogen gas (N2), in the earth’s
atmosphere.  Mineral forms of nitrogen, ammonium (NH4

+) and
nitrate (NO 3

–), are important nutrients to support phytoplankton
productivity.  Mineral nitrogen may be removed from aquatic
ecosystems through the process of denitrification, a bacterially
mediated chemical process that occurs in sediments at the bound-
ary between oxygen-rich top layers and lower anoxic sediment lay-
ers.  Nitrogen gas formed by denitrification of nitrate eventually
diffuses into the water and then into the atmosphere (see Rysgaard
et al. 1994).  (Figure by K.L. Schulz, SUNY College of Environ-
mental Science and Forestry, Syracuse)



Bivalves also cycle nitrogen through their release of
urinary ammonium in its dissolved form directly into the
water column. Many species of phytoplankton have the
ability to take up ammonium directly (Figure 1) as a stim-
ulatory nutrient.  Often, phytoplankton regeneration by
ammonium released by bivalves is quite rapid (Ausmus
and Ausmus 1991; Pietros and Rice 2003), thereby main-
taining phytoplankton populations, despite the filter-feed-
ing process.  The cycle of filter feeding on rapidly
regenerated phytoplankton by bivalve populations and the
release of ammonium in turn is yet another mechanism by
which bivalve populations can exert control over phyto-
plankton populations, thus moderating boom and bust
cycles of intense blooms (Cloern 1996).  

Bivalves then are a “keystone” species because they
(a) exert “top-down” control of phytoplankton popula-
tions by filter feeding, or grazing; (b) exert “bottom-up”
control through biodeposition and promotion of nutrient
removal (i.e., burial and denitrification); (c) sequester
nitrogen in the form of proteins in meats and shells; (d)
stabilize phytoplankton growth dynamics through the
moderation of ammonia cycling in the water column.  For
these reasons, many researchers have argued that shellfish
restoration and policies that encourage expansion of shell-
fish aquaculture in coastal waters is of significant ecolog-
ical importance in efforts in the Northeast for mitigating
the effects of coastal development and human-induced
increases of nutrient loading (Folke and Kautsky 1989;
Ulanowicz and Tuttle 1992; Rice 2000). 

Environmental Impacts of Shellfish
Aquaculture Gear and Practices

In a review of environmental impacts of shellfish
aquaculture, Kaiser et al. (1998) distinguish between
impacts by cultured organisms and the practices required
for growing and harvesting them. For instance, rearing
oysters in subtidal rack and bag systems is a standard
practice in Southern New England and some parts of the
Northeast. Assessments of the impact of this gear type
suggests that they act as refugia for a variety of marine
organisms, including the juvenile stages of various species
of commercially valuable finfish (DeAlteris et al. 2004;
Tallman and Forrester 2007).  There is also evidence that
shellfish in suspended culture enhance fish and crab pop-
ulations on the bottom (Iglesias 1981; Mattson and Linden
1983), and that fouling organisms on the mussel long lines
can enhance populations of grazing and predatory fish
(Tenore and Gonzalez 1976).     

In some areas of the Northeast, quahog clams and
softshell clams are farmed in intertidal flats where nets or
plastic mesh are used for covering the shellfish and pro-

tecting against predators (Figure 2).   Studies of impacts
of this type of shellfish farming in England using the
Manila clam Tapes philippinarum have shown buildup of
fouling organisms on the netting and a concomitant
increase in grazing molluscs and juvenile fish associated
with the nets (Spencer et al. 1996).  While preparation of
the beds and harvesting of clams from the plots by various
mechanical plows or hydraulic devices disrupts infaunal
communities, recovery is rapid with original communities
returning in less than a year (Spencer et al. 1998). Distur-
bance and accidental take of non-target organisms is
unavoidable regardless of bed preparation and harvest
mechanism; however, in the majority of cases increased
diversity and abundance of species living in nooks and
crannies of all shellfish compensates for temporary losses
(Kaiser et al. 1996).  

Exotic Organisms, Hitchhiking Pests,
Diseases, and Biosecurity

While introduced species for commercial aquacul-
ture have been economically successful and have posed
no environmental problems (Mann 1983), there are great
concerns that the widespread movement of cultured
species (broodstock, seed, or planting stock) will also
facilitate the movement of disease-causing organisms and
exotic species (Naylor et al. 2001), which pose potential
dangers for both cultured and wild stocks (Ford 1996). In
all political jurisdictions in the Northeast, policy and reg-
ulatory mechanisms are in place to assure biosecurity
through review of proposed transfers of shellfish and
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Figure 2. Shellfish farmer Joel Fox in a typical northern quahog,
Mercenaria mercenaria, farm plot in Wellfleet, Massachusetts.
Extensive sand flats during low tide are cultivated before planting
hatchery-reared seed at about 50 clams/sq. ft. To protect against
predation, netting is rolled out to cover the entire plot and either
fastened to submerged rebar or nailed to boards buried in the sed-
iments. The quahog aquaculture industry in Wellfleet has a long-
standing reputation of cordial relations with seaside homeowners.
(Photograph by Michael A. Rice)



proper quarantine procedures (e.g., Bushek et al. 2004).
As a general rule, shellfish aquaculturists are mindful and
strongly supportive of biosecurity policies and best man-
agement practices, because inadvertent aquatic animal
disease and pest introductions could potentially be cata-
strophic to their own businesses (Shumway et al. 2003). 

Aquaculture and the Public Trust
Nearly all shellfish aquaculture operations in the

Northeast occur within the public waters of their respec-
tive states; they may also draw or discharge water into
public trust waters of their state, thereby requiring over-
sight by government agencies (Duff et al. 2003). Many
researchers have argued that the official review process
should include predictive modeling of the various impacts
of shellfish aquaculture in order to determine an upper end
or carrying capacity. For instance, Grant et al. (1998) have
suggested estimating annual phytoplankton production
and comparing that production with the nutritional needs
for all “natural organisms” within a bay:  the results would
then provide an estimate of the ecological carrying capac-
ity of mussel farms that might be developed in the bay to
feed on excess phytoplankton supply. Recently, Newell
(2007), following ideas from Costanza and Folke (1997),
argued that comprehensive ecological carrying capacity
modeling of shellfish aquaculture operations could better
inform our understanding of the economic value of shell-
fish aquaculture in providing ecosystem services. One
outcome of such models might lead to economic credits to
shellfish growers for their role in maintaining water qual-
ity in coastal water bodies (Ferreira et al. 2007).

While shellfish growers and environmental manage-
ment agencies may well consider ecological carrying
capacity of shellfish aquaculture on good environmental
management grounds, there are reasons to expect that
shellfish farming in the Northeast may be limited by
socio-political pressure long before ecological carrying
capacity of shellfish aquaculture has reached any of our
estuaries (Figure 3).  First, wild shellfish populations are
at a fraction of historic highs and there is a long way to go
to reach restoration parity; second, relatively affluent
coastal populations often express reservations over the
loss of recreation and aesthetic values that are often artic-
ulated in the rhetoric of environmental protection.   Rec-
ognizing this dilemma, McKindsey et al. (2006) have
proposed the concept of “social carrying capacity” as a
modifying feature of ecological and economic models to
account for such concerns.   

Quantification of the value of aesthetics and other
environmental and social non-market values is often a dif-
ficult and imprecise task, though estimates can greatly
assist decision makers.  For example, Johnston et al.

(2001) estimated the non-market amenity values of main-
taining farmland in the Peconic Bay estuary system of
Long Island, New York, an area with intensive develop-
ment pressures. The use of various methodologies to
assess non-market valuation of aquaculture is still in its
infancy, with much of the prior work focused on non-mar-
ket economic losses by environmentally destructive forms
of aquaculture as practiced overseas (Gunawardena and
Rowan 2005). Such economic assessments are an area fer-
tile for continued research.   Nevertheless, the known ben-
efits of shellfish aquaculture in providing environmental
services, and other positive non-market amenities in the
Northeast are important and need to be considered by pub-
lic agencies as guidance in their policy decisions.
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