The Maryland Sea Grant bookstore is closed from December 10 to January 3.

Research Publications: UM-SG-RS-2004-05

Share:

Title:

Effects of low dissolved oxygen on zooplankton predation by the ctenophore Mnemiopsis leidyi.

Year:

2004

Authors:

Decker, MB; Breitburg, DL; Purcell, JE

Source:

Marine Ecology Progress Series
280 : 163 - 172

DOI:

10.3354/meps280163

Abstract:

The occurrence of low dissolved oxygen (DO), caused by vertical stratification and excess nutrient inputs, is an important and widely occurring physical feature in aquatic systems. Because some gelatinous species, such as the lobate ctenophore Mnemiopsis leidyi are more tolerant of low DO concentrations than their prey and competitors, hypoxia may have profound effects on trophic interactions. Predation, clearance and digestion rates of ctenophores feeding on zooplankton (primarily Acartia tonsa) were measured at 1.0, 2.0, 3.0 mg l-1 and air-saturated (approximately 7 mg l-1) DO. Clearance of zooplankton by large ctenophores (mean 22.5 ml, range 7 to 46 ml) was greater at low DO concentrations than under normoxic conditions. In contrast, consumption of zooplankton by small (mean 2.9 ml, range 1 to 10 ml) M leidyi did not differ among DO levels. Similarly, ctenophore digestion rates were unchanged at oxygen concentrations as low as 1 mg l-1. Jumping frequency of A. tonsa copepods decreased significantly with decreasing DO concentration (1.0, 2.0, 3.0 mg l-1 and air-saturated). Such changes in prey behavior in low DO could affect both encounter and capture rates, potentially making less-tolerant prey more vulnerable to predation in hypoxic waters. Gelatinous species, which are more tolerant of hypoxia than fishes, may be able to inhabit regions of low oxygen that are avoided by zooplanktivorous fishes with high oxygen requirements. This could lead to dominance of gelatinous predators in areas affected by severe hypoxia and might alter energy pathways in these systems.

Open Access:

This article is freely available online. You can use the DOI number to find it through the journal's website or through a search engine.

Related Research Project(s) Funded by Maryland Sea Grant:

Maryland Sea Grant Topic(s):

'Related Research Project(s)' link to details about research projects funded by Maryland Sea Grant that led to this publication. These details may include other impacts and accomplishments resulting from the research.

'Maryland Sea Grant Topic(s)' links to related pages on the Maryland Sea Grant website.

The Blue Crab: Callinectes Sapidus

An essential resource for researchers, students, and managers.  Get your copy today!

Subscribe to Our Newsletter